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Abstract—The paper examines several distributed mechanisms
that can be used in wireless networks consisting of base stations
transmitting onto a population of receivers. The overall goal of
the algorithms is to optimize a global measure: the sum of capac-
ities of the channels formed between transmitters and receivers
in the presence of interference. We introduce a mathematical
model of the operation of an OFDM-based wireless network and
on this premise we pose the problem of interference in a game
theoretic setting. We propose a simple but expressive way of
modeling “smart devices” as learning and executing agents and
introduce three types of such agents. This part of the work is
carried out in the scope of the multi-armed bandit framework.
One of the three algorithms we propose is well known and widely
studied and two others are new variants of known algorithms
seemingly not yet studied. By numerical simulations we show
that these mechanisms improve network performance in the
considered model. We offer some basic heuristic explanations
of this improvement and identify future work.

Index Terms—game theory, wireless networks, spectrum allo-
cation

I. INTRODUCTION

Recent OFDM-based technologies like LTE or NR use
advanced mechanisms (such as effective modulation and cod-
ing techniques) to increase the spectral efficiency of wireless
transmissions. Nevertheless, not all aspects of high efficiency
transmissions are currently standardized and there is the po-
tential for improving network efficiency by optimizing network
operation. This can be achieved by having smart devices
perform self-tuning based on the observation of their current
performance.

The behavior of such smart devices can be analyzed within
the framework of game theory. In particular the multi-armed
bandit approach has been studied intensively in the context of
machine learning and the stochastic decision processes [1]. It
differs from the classical game-theoretic approach to learning
(cf. [2]) by the lack of necessity of tracking of other players’
decisions in the algorithm governing a given player’s behavior.
This eliminates the need for direct cooperation and simplifies
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design. In this work we adopt the multi-armed bandit approach
to study the problem of interference management [3].

We first explain the basic mathematical notation and terms
used in the paper (Section II) and then proceed to introduce
a mathematical model of the operation of an OFDM-based
wireless network (Section III). On this premise, we pose
the problem of interference in a game-theoretic setting. In
Section IV we propose a simple but effective way of modeling
smart devices as learning agents and introduce three types
of such agents. The work is carried out in the scope of the
multi-armed bandit framework. One of the proposed algo-
rithms seems to be not discussed in the literature and another
one, based on Thompson sampling, is proposed in a variant
slightly different compared with what is known from the
literature (cf. [1]) and inspired by the Kolmogorov-Smirnov
test. In Section V, we present the assumptions and results
of a simulation analysis of the game described in Section III
where players behave according to algorithms introduced in
Section IV. Section VI discusses the theoretical justification
of the simulation results using heuristic terms. Finally, the last
section discusses open questions and future research.

II. NOTATION

Before proceeding with a description of our model, we
briefly outline the mathematical notation used. First, by∏

i∈I Xi we denote a Cartesian product of the family of sets
indexed by I . For x ∈

∏
i∈I Xi and j ∈ I , xj is a projection

of x on Xj and x−j is a projection of x on
∏

i∈(I−{j})Xi.
We denote the set of all functions from X to Y as Y X .
When X ⊂ Y the IX : Y → {0, 1} is an indicator function,
i.e., IX(y) = 1 ⇐⇒ y ∈ X . Finally, with any given
X and probability distribution ds on X , we will associate a
“pseudo function” sampleds which, whenever called returns
an element of X drawn randomly according to distribution ds.
If we know X and want to sample from this set according to
a uniform distribution we simply write sample(X).

III. GAME-THEORETIC SETTING

We address the basic problem of downlink performance
in wireless networks within the framework of game theory.
Ultimately, we are interested in effective algorithms that can
be applied locally in each of the transmitting entities inISBN 978-3-903176-28-7© 2020 IFIP
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order to increase network performance. We limit ourselves to
algorithms that are based on choosing strategies in games that
naturally arise when a system of interacting transmitters is
considered.

The considered telecommunication problem is the follow-
ing: we have many transmitters which share the same resources
(radio spectrum) and send data to receivers assigned to them.
We assume that each agent possesses knowledge only about
their own performance and past behavior.

First, let us define the game Γ as a triple:

Γ = (P, {Sp}p∈P , {up}p∈P ),

where P is a finite set of players (agents), Sp is a finite set
of strategies available for each player p ∈ P . The individual
payoff function for each player is up :

∏
l∈P

Sl → R.

We model the network as an interference game with the set
P of the downlink transmitters using OFDM transmissions in
a common band. We also have a population of terminals which
are the receivers of these transmissions. We assume that both
transmitters and receivers are immobile and the environment
is static (i.e., the radio channel between each transmitter and
receiver can be considered as constant in time). We also
assume that each receiver is assigned to a single transmitter
and that this does not change in time.

We divide the band designated for transmission into K
disjoint parts:

B =
⋃

i=0,...,K−1
bi.

Subsets of {b0, . . . , bK−1} are strategies available for trans-
mitters. The interaction between transmitters occurs through
interference and the payoffs can be expressed in terms of the
capacity of the channels between the transmitter and receivers
assigned to it. Thus, for each p ∈ P :

Sp ⊂ {s|s ⊂ {b0, . . . , bK−1}}

Furthermore, we denote by Home(p) the set of receivers
assigned to transmitter p. For transmitter p and receiver ue and
m ∈ B, the channel between p and ue (assuming a sufficiently
long channel coherence time and sufficiently wide coherence
bandwidth) can be expressed by a complex number hp,ue,m.
Using this notation and following the standard formula for the
capacity of a Gaussian channel with interference, we define
the payoff of player p ∈ P as:

up(s) =
1

|Home(p)|
∑

ue∈Home(p)

(
BW

|B|
×

∑
m∈sp

log

(
1 +

|hp,ue,m|2

n+
∑

p′∈P−{p}
Isp′ (m)|hp′,ue,m|2

))
, (1)

where we have assumed the same normalized power for each
of the transmitters, the same level of Gaussian noise n and the
same bandwidth bi = BW

|B| for each bi ∈ B. We also assume
that there is at least one receiver connected to each transmitter
(Home(p) 6= ∅ for all p), so we do not need to worry about

the denominator in (1). Intuitively, the payoff is an average of
the instant capacities of the channels to all receivers handled
by the transmitter taking into account interference from all of
the other transmitters using the same part of the spectrum.

We assume that K = 2, the bandwidth of b0 is the same as
bandwidth of b1, and there is a flat radio channel between
transmitter and receiver across the whole bandwidth, i.e.,
hp,ue,b0 = hp,ue,b1 for each transmitter p and receiver ue.
Furthermore, we assume the following variant of the game
where, for each p ∈ P , Sp = {{b0}, {b1}, {b0, b1}}.

An important observation is that assuming the presence of
receivers, playing {b0, b1} is always a dominating strategy.
Using all of the spectrum under the assumption that other
transmitters stay with their strategies is always better than
using only part of it.

To measure total network performance we consider the sum
of payoffs of all the players. Thus, we define the welfare
function as a mapping w :

∏
p∈P

Sp → R, given by the equation

w(s) =
∑
p∈P

up(s).

Finally, we assume games are played in sequence. This, in
the context of wireless games, is a natural assumption. For
example, in LTE networks time is quantified and divided into
TTIs (Transmission Time Intervals) and the decision about
allocating spectral resources in each TTI corresponds to a
single play.

IV. LEARNING PLAYERS AS LOCAL OPTIMIZERS

A. Model

Our general objective to find methods that would allow the
optimization of the welfare function in the network over the
players’ strategy space. We limit ourselves to the class of
algorithms that can be executed by each player independently
and where the decision about the strategy is based on the ob-
servation of player performance and the “local environment”.

We will define algorithms according to the following
scheme. We assume that with each player there is associated
some set of states representing “memory” Mp. Gathering
experience or “learning” will be modeled by the function

learnMp : Mp × S →Mp,

where S =
∏
i∈P

Si.

The decision of a player is a function of the memory and
is modeled by

selectp : Mp → Sp.

Since we want to consider also algorithms that use random-
ness, we slightly abuse the function definition here. In such
cases “functions” learnM and select should be understood as
sampling from some probability measure on the appropriate
sets.



Now, if we denote by M =
∏
p∈P

Mp we can define ev :

M →M as

ev(m) =

∏
p∈P

learnMp ◦
∏
p∈P

selectp

 (m).

We can consider the history or trajectory of the game, i.e.,
a sequence of iterations (mi)i∈N so that mi+1 = ev(mi). We
can also consider the history of the game in terms of choices
as (si)i∈N = ((selectp)p∈P (mi))i∈N where mi are as above.

With these definitions one can define the average perfor-
mance of the process at the nth step in terms of welfare w
as

q(n) =

n−1∑
i=0

w(si)

n
.

This value depends on the initial condition s0 or, since we
consider the process to be driven by the evolution in the
memory space, on the initial condition m0.

B. Players

Every time we describe the algorithm for a player, we
define appropriate memory spaces and “functions” learnM
and select.

1) ε-greedy player: In this case Mp = RSp and the
parameters are the probability of exploration ε ∈ [0, 1] and
α ∈ [0, 1]. We assume only knowledge of outcome of the
game and define:

learnMp(mp, s) = mp+(α−1)mpI{sp}+(1−α)up(s)I{sp},

which amounts to updating the remembered function by modi-
fying the value at the element sp to be αmp(sp)+(1−α)up(s).
The select function is probabilistic and is defined as

selectp(mp) ={
sample(arg max

x∈Si

h(x)), for sample([0, 1]) ≥ ε,

sample(Sp), for sample([0, 1]) < ε.

2) Greedy with auto cooling player: This is a variant of
ε-greedy in which the probability of exploration is adaptive.
We define these internal parameters: ε ∈ [0, 1] being the
initial value for the parameter controlling the probability of
exploration, α ∈ [0, 1] controlling how fast estimation of the
value of the strategy changes, γ ∈ [0, 1] being the maximal
allowed probability of exploration, and η ∈ [0, 1] controlling
how fast the probability of the exploration changes. We have:

Mp = RSp × R× [0, 1],

learnMp((ep, l, π), s) = (e′p, up(s), π′),

where

e′p = ep + (α− 1)epI{sp} + (1− α)up(s)I{ep}

is the update known from ε-greedy and

π′ = 

ηπ + (1− η)γ, if (sp /∈ arg max
x∈Sp

ep(x) and

up(s) > ep(sp)) or
(sp ∈ arg max

x∈Sp

ep(x) and

up(s) < ep(sp))

ηπ, otherwise

Now we define:

selectp((ep, l, π)) =sample(arg max
x∈Sp

ep(x)), for sample([0, 1]) ≥ π

sample(Sp), for sample([0, 1]) < π

Instead of a fixed value of ε as in ε-greedy, in this case we
maintain a variable π describing the probability of deviating
in the choice of the strategy from what is currently considered
the best choice. π is modified according to the “level of
correctness” of the current optimal choice. i.e., if the currently
selected strategy is different then current optimal but payoff is
higher than estimated for the current optimal the probability
of exploration is increased. Similarly, it is increased when
for the currently considered optimal strategy one obtains a
value below the estimation. In any other case the probability
of exploration is decreased.

3) Thompson sampling player: The last considered algo-
rithm is a Thompson sampler. The idea behind Thompson
sampling is to treat the payoff associated with each strategy
as a random variable. The distribution of this variable is
unknown, however, each time players choose a strategy and
receive a payoff, they update their empirical distribution asso-
ciated with this strategy. The choice of strategy is done first
by sampling for each strategy from the empirical distribution
associated with each strategy and choosing the strategy with
the highest value of the sample (or break the tie by sampling
uniformly if more then one is highest). Typically, in Thompson
sampling empirical distributions are chosen to be from some
parametrized family of distributions (e.g., the beta distribution
[1]). We use a different approach, which we will call a non-
parametric Thompson sampler.

For any set X we denote X∗ =
⋃

n∈N
Xn. Now, we define

Mp = (R∗)Sp and learnMp(f, (sl)l∈P )) = g, where

g(r) =

{
(f(r), up(s)) for r = sp,

f(r) for r 6= sp

and we use the natural identification Xn×X ∼ Xn+1. So, any
time a player plays some strategy it notes the payoff associated
with the strategy.

Now let us assign to x ∈ R∗ the distribution d(x) by the
following formula:

d((x0, . . . , xn−1)) =
1

n

∑
i<n

I{xi}



Fig. 1. The simulated topology. Icons of towers represent transmitters, small
rectangles represent receivers, and lines represent division of the grid which
determines the assignment of receivers to transmitters.

This is the probability distribution on R concentrated only in
the set {x0, . . . , xn−1}.

Now we can define selectp for the player:

selectp(f) = sample
(

max argsp∈Sp
sampled(f(sp)

)
The outermost sampling comes from the fact that the arg max
operator returns a set (finite in this case). When a singleton
is returned, sampling is trivial and returns the only element in
the set.

V. RESULTS

In this section we present results of a simulation of the
game where all players are of one of the types described
in Section IV-B. The game is be the interference game
Γ{b0},{b1},{b0,b1} as defined in Section III. To fully specify the
game one needs to specify the position and power of transmit-
ters (that constitute the player set P ) and the set of receivers
as well as the assignment of receivers to transmitters. The last
component defines the channels between the transmitters and
receivers.

In all simulations we assumed transmitters using equal
power, regardless of selected band. 16 transmitters are placed
in the centers of squares constituting a rectangular 4 × 4
grid. There are 100 receivers in positions chosen randomly
with a uniform distribution over the whole grid. We assume
a natural rule of assignment of receiver to transmitter by
selecting the nearest one (Fig. 1). We do not assume any
channel effects except white noise of a constant power and
the attenuation being proportional to the square of the distance
between transmitter (or source of interference) and receiver.

The results of the simulations are presented in Fig. 2.
Besides the average welfare as a function of the number of
steps for the considered algorithms, we present the average
welfare for the case when all the players play a completely
random strategy and when all players play the dominant
strategy.

 10

 15

 20

 25

 30

 35

 40

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000  20000

a
v
e
ra

g
e
 w

e
lf
a
re

 w

iteration

Constant full spectrum strategy
Random strategy

epsilon-Greedy
Greedy with Auto-cooling

Non-parametric Thompson Sampling

Fig. 2. Comparison of the performance of players of various types for the
Γ{b0},{b1},{b0,b1} game.

In such a simple setting one can observe significantly
higher welfare when players are learning players of any of
the discussed types comparing not only to the set of players
using a random strategy, but also to the set of players playing
the dominant strategy ({b0, b1} in this case). This means,
if the results generalize to a more realistic scenario, that
with a relatively small investment in the algorithm, one can
achieve good overall performance of the network (with less
power consumption) even in the case when there is no direct
cooperation between players.

VI. DISCUSSION

There are significant difficulties in analyzing even such a
simple setting as introduced in the previous section. From
a formal point of view, the quantity we are studying here
(see Section IV) can be seen as the average value of the
function over a realization of the random process. Although
we are using the trajectory of the game in this definition, it
is better to reason in terms of the function ev defined on the
global memory space. In this case, one should consider instead
w evaluated on the actual selection of the strategies random
function E◦ ∏

p∈P

selectp(m)[w]. It can be shown that the average

of this function over a large number of realizations of the
process defined by ev is the same as the average of w over a
large number of realization of selections of s. Furthermore, in
all analyzed cases we do not deal with a finite memory space.
Also, although all considered players realize a Markov process
given by ev, this process is not ergodic. Thus, in none of the
cases can we use an “off-the-shelf” theorem to show that in
the limit the process will behave according to any invariant
measure.

We will argue that in the considered game with learning
players, the players will be biased towards playing a dominant
strategy. Obviously, by the very construction of the algorithms,
players will deviate from playing only the dominant strategy.

Intuitively we may expect some long term equilibrium
scenario, so, for further considerations we will assume that an
invariant measure is finally reached (this is not necessarily a
unique measure independent of the realization of the process).
Also, one can show that, in any moment for two individual
players, the selection of the strategy is independent.



Consider the case of the ε-greedy algorithm. For a given
player p ∈ P and si ∈ Sp, the value of mp(si is a random
variable. Since the selection of strategies for all players is
independent and the probability of selection is ≥ ε, in the
long run, from the rule of updating mp(si) we should have
E[mp(si)] = E[αmp(si) + (1− α)up(si, s−i)], where expec-
tation is over the joint probability of S−i under the invariant
measure. This means that E[mp(si)] = E[up(si, s−i)]. It is
easy to observe that this also means, for this specific game,
that E[mp({b1})]+E[mp({b2})] = E[mp({b0, b1})]. Since we
have a symmetry between players and the same reasoning can
be applied to other players, one can infer that an invariant
measure corresponding to the equilibrium in the long run will
prefer playing the dominant strategy. Similar reasoning can
lead to the same conclusion for the greedy with auto cooling
algorithm.

The Thompson sampler requires a different approach. We
assume that the game is played sufficiently long time, not only
to be close to equilibrium, but also so that the empiric distri-
butions associated (in our variant) with each of the players’
strategies be close enough to their limits. First observe that
in the long term, the cumulative distribution function (CDF)
Fi of the empirical distribution associated with dominating
strategy si with high probability is less or equal point-wise
comparing to other CDFs associated with the distribution
functions for other strategies. This is because, taking any
j 6= i {z : up(si, z) ≤ x} ⊂ {z : up(sj , z) ≤ x}. So,
if we assume that the equilibrium measure restricted to the
choices of another player is µ, we have: Fi(x) ∼ µ({z :
up(si, z) ≤ x}) ≤ µ({z : up(sj , z) ≤ x}) ∼ Fj(x). For
the sake of simplicity of calculations we operate in the scope
of distribution theory. For any i distribution corresponding
to CDF, Fi is in this case F ′i . It can be shown that for
i 6= j the probability of drawing a larger sample according to
distribution corresponding to si then to sj is ≥ 1

2 . This further
implies that the probability of drawing a maximal number
from the distribution associated to si which corresponds to
the probability that the stochastic function select returns si is
highest among all strategies.

On the other hand, numerical experiments reveal that so-
lutions, where players play a dominant strategy most of the
time but randomly and independently deviate from it (with
some appropriately small probability), lead to solutions of
similar overall quality as those achieved by learning players.
For the game described here, under the same assumptions as
in the simulation, the dependency of the average welfare w
on the perturbation, i.e., deviation from the dominant strategy
(understood as the probability of playing a different strategy
by the player) is presented in Fig. 3.

As a consequence, at least in such a simple model of the
network as considered here, a strategy based on just simple
giving up maximal allocation randomly with some probability
(a “dumb” strategy) may be comparable to more intelligent
behavior based on the multi-armed bandit model. This is not
an argument against the usefulness of implementing intelligent
agents to manage cells in the network. It is not entirely clear,
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Fig. 3. Dependency of the welfare on the perturbation from dominant strategy
for the Γ{b0},{b1},{b0,b1} game.

e.g., what should be the size of perturbation from the dominant
strategy. Algorithms based on the multi-armed bandit model
may find close to optimal equilibria.

VII. CONCLUSIONS AND FURTHER RESEARCH

This work should be treated as a preliminary study. Even in
the considered subclass of algorithms from the area of multi-
bandit solvers, there remain many algorithms in the literature
to be verified from the point of view of their efficiency in
selecting good solutions. Furthermore, assuming any form of
cooperation (e.g., informing neighbors of current payoffs or
choice of strategy) leads to a rich variety of possible designs
of interactions and opens new interesting possibilities. We
anticipate that full power of the intelligent learning agents’
controlling the transmission strategy in cells will become more
visible exposed in these, more sophisticated designs.

The optimization objective in the presented approach was
done over whole network and not for a single player. So, it is
not obvious that if a network composed of any single type of
player would perform better then a diversified population of
players. This question has rarely been asked (e.g., in [4]) par-
tially because it imposes high difficulties on the mathematical
analysis.

The problem we started from is purely practical and one
should expect that the effect of the investigation would be the
design of a real technical system. This requires understanding
how much we lose coming from a theoretical model to
the reality of technical application because of the overheads
imposed by limitation of the standards, imperfections of the
devices, delays, etc.
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